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Viscoelastic characterization of poly(butylene 
terephthalate) using longitudinal resonances 

R. K. GALK iEWlCZ, *  F. E. KARASZ 
Materials Research Laboratory, Department of Polymer Science and Engineering, 
University of Massachusetts, Amherst, Massachusetts 01003, USA 

The viscoelastic constants of poly(butylene terephthalate) were determined as a function 
of temperature using the harmonic dispersion of longitudinal resonances. Measured 
quantities were Young's modulus, Poisson's ratio and the logarithmic decrement, from 
which the bulk and shear moduli were derived. It was found that a dispersion relation 
used by Schwarzl and Struik can be employed to compensate for frequency dispersion 
of the modulus using no adjustable parameters. Measured quantities agree well with 
previously published values. Appendices are included which derive the resonant frequency 
shift due to damping in our specific experiment and which estimate the error introduced 
by the SchwarzI-Struik dispersion relation. 

1. Introduction 
Many methods [1] exist for determing the visco- 
elastic response of polymeric materials subjected 
to dynamic stresses. The majority of experimental 
techniques measure either one of the four depen- 
dent elastic constants, or one of these constants 

/ 
together with a quantity representing the internal 
loss in the sample (i.e. logarithmic decrement, 
tan 6, attenuation coefficient). 

Owing to the difficulty in the direct measure- 
ment of Poisson's ratio, values have typically been 
obtained by calculation from Young's modulus 
and either the shear or bulk modulus. There is a 
difficulty, however, in using indirect methods, 
in that incompatabilities in the measured elastic 
cons t an t s -due  to differing samples, sample 
thermal histories, measurement frequencies, strain 
levels, and an i so t ropy-can  render derived con- 
stants unreliable. If Young's and shear moduli are 
used to derive Poisson's ratio, it can easily be 
shown that small uncertainties in these moduli can 
lead to relatively large uncertainties in the value 
obtained. Thus the ability to measure this quantity 
both directly (from a single set of  measurements 
on a given sample) and simultaneously with 
another constant, presents a valuable experimental 
advantage. 
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In all resonance experiments one obtains an 
elastic modulus and a damping constant. If  longi- 
tudinal resonances are employed, however, it is 
also possible to measure Poisson's ratio by examin- 
ing the frequency dispersion from a pure harmonic 
sequence of resonance overtones. While this tech- 
nique has been reported in the literature previously 
[2,3], to our knowledge there have been no 
reports of the measurement of the dependence 
of Poisson's ratio determined by this method or 
of an attempt at a total viscoelastic character- 
ization at one temperature for polymers or any 
other material. 

In a previous publication [4] we have shown 
that the harmonic dispersion technique can be 
applied in a straightforward manner to low-loss 
materials over a wide temperature range. The 
purpose of this paper is to show that with some 
modification the technique can be used with 
materials which exhibit substantial relaxation 
mechanisms in the temperature-frequency region 
of interest. 

2. Theory 
In the lowest order approximation [5] the phase 
velocity, C, of longitudinal vibrations in a rod 
is given by C = (E/p)  v2 . Here E represents Y0ung's 
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modulus and p the density of the rod. If a sinus- 
oidal stress is applied to the face of a rod of 
finite length L, then maximum displacement 
amplitude (resonance) is obtained at the end faces 
for discrete values of the wavelength, X, given by 
Xn = 2L]n (n = 1, 2, 3 . . . .  ). The resonance fre- 
quencies,f, are thus given by 

f ,  = n(E/p)u2/2L, (1) 

and represent a pure harmonic series. (If, in actual 
practice, the rod is clamped midway along its 
length, the clamp defines a displacement mode and 
one examines only the odd harmonics: n = 1,3, 5, 
7 . . . . .  ) If end face displacement amplitude is 
monitored while the frequency is swept through a 
resonance peak then the logarithmic decrement is 
given by [6] 

A n = ~r Afn/fn = rr tan 6n (2) 

where Afn is the peak width at half the maximum 
signal amplitude. It should be noted, however, that 
Equation 2 does not hold for arbitrarily large n; 
this will be discussed shortly. 

A higher order elastic approximation for the 
phase velocity in a circular geometry is 

I,-~n ] j '  (3) 

where v represents Poisson's ratio and r the radius 
of the rod. 

The correction term is due to the expansion 
and contraction of the rod circumference as a 
pressure wave travels along the sample; this gives 
rise to transverse (shear) as well as to longitudinal 
(elongation) displacements within the rod. For the 
values o f r  and Xn employed in this work, the ratio 
of transverse to longitudinal displacements is quite 
small; however as r/X,, increases, the ratio becomes 
large enough to (i) require the use of higher order 
terms in Equation 3, and (ii) bring into question 
the assumption underlying Equation 2 (i.e. does 
an appreciable shear damping component enter 
A n with increasing transverse vibration?). For 
these reasons, values of r/L and n must be con- 
strained so that the correction term amounts to 

1%. 
The normalized frequencies can be obtained 

from Equation 3 : 

f n  (%)1/2 1 / (Twrn] 2] 
~ - =  ~L- 1-- ~ -  (4) 

so that a plot of fn/n against the square of the 

722 

harmonic mode number describes a straight 
line whose intercept and slope yield Young's 
modulus and Poisson's ratio, respectively. From 
these two elastic constants (E, v) the shear and 
bulk moduli (G and K, respectively) can be cal- 
culated using 

and 

K = E / 3 ( 1 -  2u) (5a) 

G = E/2(1 + u). (5b) 

All four elastic constants (E, G, K, and u) and a 
measure of the internal damping (A or tan 6) are 
thus obtained from one experiment consisting of 
the measurement of the odd-numbered longitu- 
dinal harmonic resonances of the sample. 

In a low-loss material such as an inorganic glass 
well below its melting temperature, the above 
analysis carries over without modification [4]. For 
lossy materials-  such as organic polymers which 
exhibit relaxation phenomena at or near the fre- 
quencies and temperatures of in teres t -  the 
existence of a relaxation peak in A implies a ire. 
quency dispersion in E. This gives rise to two com- 
plications. Firstly, E can no longer be referred to 
as Young's modulus but must be specified as being 
either the absolute, storage, or loss modulus, 
denoted by [E* I, E '  and E", respectively, where 

E* = E' + iE" (6) 

and i = x/-- 1. If Equation 1 is solved for E, one 
obtains for n = 1 

2 2~ E = 4pL f l .  (7) 

If, on the other hand, a calculation similar to that 
of Horio and Onogi [91 (see Appendix 1) is 
performed for the system, then one finds that 

E'(fr) = 4pL2fr 2 [1 + �88 2/5 (fr)], (8) 

where fr is the measured resonant frequency and 
tan 6(fr) is the measured loss at ft.  Therefore, 
it follows that (i) all moduli mentioned in this 
paper refer to the respective storage moduli 
unless otherwise explicitly noted, and (ii) data 
analysis proceeds as for the elastic case with f,, 
being replaced by fn[1 + (1/8)tan 2 6(fn)]. Except 
in the region of maximum dispersion in tan 6 this 
correction is a negligibly small one. 

Secondly, since one now finds that E ' - E ' ( f ) ,  
Equation 4 will in general no longer yield a straight 
line. In fact, to obtain the true value of u, the 
dispersion contribution due to relaxation (as 



distinct from geometry) must be subtracted from 
each harmonic overtone examined. This process 
can be performed at each temperature in the 
following manner. 

(1) Harmonic overtones n =  1, 3, 5, 7, 9, 11 
are determined, yielding values of fn and tan 3n. 

(2) The modulus corresponding to f3 is cal- 
culated from 

E'(f3) = p(2Lf3/3) 2. (9) 

The third overtone is chosen because it is much 
less sensitive to various physical perturbing effects 
than is the first [4]. In fact, the fundamental is 
omitted throughout the remainder of the calcu- 
lations. Also, there is no need to include a v 
correction in Equation 9, as it will cancel out in 
Equation 1 lc, see below. 

(3) The change in modulus due to frequency 
dispersion is then determined from the following 
relationship after Schwarzl and Struik [10] (see 

Appendix2). / + 1,, l 
1 ... ln(fn'/fn)tan 6( f , )  

E ' ( f . , )  = E ' f f . )  . . . . .  , 

[ 1 - - l l n ( f n ' / f n ) t a n ' ( y n ' ) J  

(10) 
where n' is the next highest odd harmonic to n, 
i.e. n' = n + 2. 

(4)At this point one has taken measured 
values of fn, established a reference modulus 
E~, then calculated the dispersion due to relaxa- 
tions of the modulus (a derived quantity) by 
utilizing the dispersion in tan 6 (a measured quan- 
tity). It is now necessary to translate this modulus 
dispersion back into frequencies. This is done by 
realizing that, similar to Equation 9, 

(fn)observed • (n/2L)(E'/P) in. ( l l a )  

However, what is desired is the adjusted value of 
fn corresponding to E'3, the reference modulus: 

( f n ) a d j u s t e d  = ( r / / 2 L ) ( E ; / p ) l / 2 .  (1 l b )  

Dividing Equation l lb  by Equation l l a  and 
rearranging leads to: 

( fn )ad jus t ed  i ' 1/2 = ( f n ) o b s e r v e a ( E 3 / E n )  . ( l l c )  

These adjusted frequencies (obtained using no 
additional parameters) are then employed in the 
plot of fn/n against n 2 to determine both E'(f3, T) 
and u(T). 

Appendix 2 discusses the errors and assump- 
tions involved in this calculation in detail. 

3. Experimental details 
3.1. Sample  
The particular sample studied was cut from a 
section of 1.5in. diameter rod of poly(butylene 
terephthalate) obtained from the Tennessee East- 
man Company. Through careful machining, the 
sample was reduced to a rod of diameter 0.614• 
0.007cm and length 19.573 • cm. This rod 
was then placed in a cylindrical bore, heated under 
slight pressure to 221 ~ C to relieve thermal stresses 
and cooled to room temperature at approximately 
1 ~ C min -1 . Aluminium electrodes were evaporated 
on to the lapped end faces of the rod and 0.009 cm 
diameter copper wire was attached to the side of 
the rod at each electrode using silver paint for 
grounding purposes. The mass of the sample was 
7.7707g yielding a density of 1.340• 
cm -3 at 23~ equivalent to a crystallinity of 
about 0.53. 

3.2. Apparatus 
A general description of the electronics has been 
given previously [4]. The sample support system 
was substantially modified as follows. The sample 
was supported at the centre by three dulled razor 
blades spaced equidistant around the circumfer- 
ence. While two of these edges were clamped 
firmly in place, the third was spring-loaded so as to 
keep constant tension on the sample independent 
of temperature and the thermal expansion differ- 
ential between the sample and sample holder. This 
differential also necessitated the construction of 
adjustable transducer mounts. The final design is 
shown in Fig. 1 in which the sample, sample 
holder, and transducers are set into a copper tube 
of approximate length 28 cm and inner diameter 
2.5 cm. Nichrome wire enclosed in teflon tubing 
was wrapped around the copper tube in two 
independent coils as indicated. Two copper-  
constantan thermocouple junctions were then 
placed into the tube to measure thermal gradients 
along the length of the tube. The assembly was 
placed inside a large copper can which was then 
evacuated and immersed in a constant temperature 
bath for sub-ambient measurements. For above- 
ambient temperatures, a heating tape was wrapped 
about the outside of the can which was placed 
in a dry dewar and the entire can was heated 
with the tape and a proportional device (Versa- 
Therm, model 2156; Cole Parmer Instrument Co). 
Control rods were introduced through the can 
top to adjust the transducers to the data-taking 

723 



TC j n 

H2 -1 
= 

i 

i 

i 

T( 

t 

m _1 

UUT 

Figure1 Schematic drawing of the  sample holding/ 
transducer apparatus. Shaded regions represent electrical 
insulators. For  clarity, grounding wires are not  shown and 
the sample - t ransducer  gaps are exaggerated. CR = control  
rod; IN = signal input;  TC = thermocouple ;  HI ,  H2 = 
nichrome heater  coils; EX = excitation transducer;  S = 
sample; SH = sample holder; RX = response transducer;  
Out = signal output .  

position (approximately 0.001 cm from the sample 
ends). 

The overall procedure was as follows: the 
vacuum can was evacuated and flushed with 
helium several times. The can was immersed in 
liquid nitrogen and, after equilibrium was estab- 
lished, the odd resonances up to n = 11 were 
measured and the n = 1 reasonance was repeated 
as a check for drift in temperature over the time 
required (roughly 1 h) to scan the seven resonances. 
The sample temperature was then raised, with care 
taken to keep the readings of both thermocouples 
as close as possible (generally within 0.3 K). Once 
the thermocouple readings were stabilized, roughly 

1 h was allowed for the sample to reach thermal 
equilibrium; the resonances were than scanned 
with a repeat of the n = 1 resonance exactly as 
before. 

A liquid nitrogen bath was employed from 77 
to 199 K, followed by methanol/methanol ice  
(172 to 169 K), methanol/dry ice (205 to 282 K), 
and ice/water (273 to 292 K). 

During the course of a run, a grounding wire 
separated from the sample necessitating a warming 
to ambient, re-evaporation of electrodes and 
grounding wire, remounting of the sample and a 
cooling to liquid nitrogen temperatures. It is signifi- 
cant to note that the change in the normalized 
resonant frequencies before and after the repair 
and remounting was less than 5 Hz and averaged 
approximately 2 Hz over all the resonances, i.e. 
one part in 3000. This error is of the order of the 
scatter in the data at those temperatures. Evidently, 
the reproducibility of the data is remarkably 
independent of sample mounting or loading due 
to the evaporated electrode, silver paint, and 
fine copper wire. 

4. Results 
Plotted in Figs. 2 and 3 are values of tan 6n against 
temperature for poly(butylene terephthatate). As 
the temperature is increased, tan 5 ,  passes through 
a distinct maximum, decreases and then rises 
again sharply as the glass transition region is 
approached. As the mode numbers increase, the 
peak amplitudes increase and peak centres shift to 
highe r temperatures; the values at the tempera- 
ture extremes are frequency-independent. The 
scatter can be seen to increase with mode number; 
this effect is due primarily to a decreasing signal. 
to-noise ratio with increasing mode numbers [4]. 

Fig. 4 shows an Arrhenius plot of peak fre- 
quency as a function of inverse temperature which 
yields an activation energy of 10.Tkcalmol- 1, in 
good agreement with a value of approximately 
9.7 kcal tool -1 obtained from a Rheovibron 
study by Nemoz et al. [ 11 ]. 

The low temperature relaxation shown in 
Figs. 2 to 4 has been observed in PBT by many 
authors. Farrow et al. [12] believed that the 
relaxation was a superposition of two peaks which 
shifted in relative strength and position as the 
number of methylene units was increased in the 
homologous series ofpoly(alkylene terephthalates). 
Illers and Breuer [13] concluded that the lower 
temperature relaxation was due to hindered 
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Tpeak for the data presented in 
Figs. 2 and 3. The least squares fit 
yields an activation energy of 10.8 
kcal tool-1. 

skewing towards higher temperatures (see Figs. 4 
and 7 in Nemoz et aL [11]). Some slight asym- 
metry can also be seen in Figs. 2 and 3 with the 
curves skewed towards higher temperatures. This 
behaviour could possibly be enhanced by overlap 
with the glass transition relaxation, especially at 

the higher frequencies. It should be noted that in 
common with all resonance experiments the curves 
do not represent isochronous conditions. However, 
the correction in terms of peak shape are negligible. 

Fig. 5 shows the dependence of the storage 
modulus on temperature, at a nominal frequency 
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Figure 6 Poisson's ratio as a function of 
temperature for PBT. 

of 15 kHz. An inflection point occurs at roughly 
230 K which corresponds well to the maximum of 
tan 61 in Fig. 3 while the rapid decrease for 
T > 300 K is correlated with the sharp increase in 
tan 6 in the same temperature region, indicative 
of  the approaching glass transition. The error bars 
are less than or of the order of the point size on 
the figure, as is the experimental scatter. 

Fig. 6 shows Poisson's ratio as a function of 
temperature. A very slight increase is seen up to 
roughly 250 K followed by a sharper rise to a 
value near 0.45. The region of this rise also shows 
increased scatter which is probably due to the 
concommitant larger dispersion and scatter in 
tan 6n with frequency shown in Figs. 2 and 3. 
With the exception of four or five points the 
overall scatter in v is very reasonable, amounting 
to about -+ 3%. 

The values of v obtained in this work fall 
generally within the bounds of 0.38 measured 
by Takemori [14] and 0.44 determined by War- 
field et al. [15]. These researchers employed far 
larger strain amplitudes and different frequency 
regimes to obtain their (ambient temperaure) 
values so that direct comparisons of data are 
questionable. 

It should be noted that although this tech- 
nique can provide four elastic constants together 
with the loss tangent for isotropic solids, the 
sensitivity to error in the bulk modulus, K, 
increases as v approaches its maximum value of 
0.5. This is shown in Fig. 7. The scatter in K 
renders estimation useless to < 30%, while that 
in G is an order of magnitude smaller. The reason 
for this behaviour can be found by differentiating 
Equations 5a and b to obtain 

d K / K  = dE/E + 2du/(1 --  2v) (12a) 
and 

dG/G = dE/E + du/(1 + v). (12b) 

Using values of  dE/E=0.1% and d~,/~,=5%, 
relative errors in K and G are obtained. While 
dG/G is less than 2% for all values of u, dK/K is 
unbounded, reaching 100% at u = 0.476. 

One may conclude then, that the technique 
employed in this work is very useful for deter- 
mining E, v, G, and tan 6. However, for most 
polymers v ~> 0.3 so that derived values of K 
are susceptible to inaccuracy and scatter. 

5. Conclus ions 
A method to unambiguously measure E, v, and 
tan 6 in polymeric systems is proposed. From 
these viscoelastic constants one can calculate G 
and K although for v > 0.4 the scatter in K is 
generally large. In particular the technique has 
substantial advantages for obtaining Poisson's 
ratio as a function of temperature at very low 
strain amplitude. 

Results of employing this technique on 
poly(butylene terephthalate) are in good agree- 
ment with previous investigations although direct 
comparisons are not possible due to the utilization 
of different strain amplitudes and frequency 
regimes among the various experiments. We believe 
that some of the experimental scatter in Poisson's 
ratio can be reduced by better temperature regu- 
lation. 

The technique is now being applied to po lymer-  
glass isotropic composite systems where it will be 
used to study the effects of inclusions on mech- 
anical properties as a function of wt % filler and 
temperature. 
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using Equation 5a, b and the data shown in Figs. 5 and 6. 

A p p e n d i x  1 
Consider a uniform rod of  length, L,  density, p, 
and cross-sectional area, A.  At any point,  x ,  along 
the length the stress can be related to the strain 
by  

u(x, T) F(x, 7) '+ rl u(x, t), 
A 

(A1) 

where o is stress, F is force and u is particle 
displacement at x and time t; E '  represents a 
modulus of  elasticity and ~ a coefficient of  vis- 
cosity. If one assumes the usually separation of  
variables and time dependence in exp(io0t), 
Equation A1 becomes 

o(x) = (E' + icon7) 4 .03U(xX) " (A2) 

Defining a complex modulus by E* = E'  + iE" 
and a phase angle by tan 8 = E"/E', we see that 

E" = rico (a3a )  
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and 

tan 8 = 71co[E'. (A3b) 

Establishing a force balance in the usual manner 
[5] but employing Equation A2, one obtains 

02 

Ox 2 u(x )+ q2u(x) = 0 ( a 4 )  

where 

q2 = coZp/(E, + icor~), (A5) 

and admits the general solution 

u(x) = A o cos qx + Bo sin qx. (A6) 

To reproduce the experimental procedure, we 
apply a force of  constant amplitude, F0,  at x = L 
and no force at x -= 0, constraining the constants 
of  integration to be given by 

Bo = 0 (A7a) 

- -F oq  
Ao - co2p A sin qL (A7b) 



Letting qL = c~ + i/3 one can easily show that 

as = (c~ (l+tanz6)l/2+l]2(1 + tanZ~) 

(A8a) 

/32 = (co2pL2/E,) [(_l + tan26) ~ i T  t~n26; 

(A8b) 

Experimentally, resonance is determined by 
measuring the square of  the displacement ampli- 
tude at x = 0. This is given by 

lu(0)l 2 = IAoi z = 

~E--7] [ ( s i n 2 s +  sinh2t3)(1 + ~tan2~ (A9) 

Now, for the pure elastic case, rl = 0 and resonance 
occurs at co = COo so that 

o~ --- So = (co~pLZ/E ') (A10a) 

/3 = 0 ( a l 0 b )  
and 

[u(O)l 2 = (Fo/AE')2/sin2so . (A10c) 

The condition for maximization of Equation A10c 
is So = 7r (and integer multiples) so that from 
Equation AlOa we have 

E' = p(Lcoo/Tr) 2. (A11) 

For real materials 7/> 0 and the resonance fre- 
quency is shifted to 

C~ = c ~ 1 7 6  = c~176 ( l + A c ~  ( A 1 2 ) c o o ]  

that is, Wr is the measured resonant frequency. 
The problem of relating E '  to the measured 
resonance frequency thus reduces to that of  
finding Aw/wo in terms oft/ ,  or more conveniently, 
tan 6. 

One can solve this problem either analytically 
or numerically. Analytically, the procedure [9] 
is to approximate c~ and r in the limit of  small 
tan a and Aw/wo, substitute into Equation (A9), 
take a partial derivative with respect to s ,  and 
set that expression eclual to zero. A resonant 
value for c~ can then be found in terms of co, 
rl, and E '  that can be related to w r to solve for 
2xco/co o. An alternative method is to solve the 
problem numerically by specifying ~?/E' and 
varying 69 about 690. This varies c~ and /3, given 
exactly by Equation A8 as a function of r and 

tan~i, and these functions are inserted into 
Equation A9. The quantity ju(0)l 2 is then maxi- 
mized for a given value of  frequency w r and 
tan6  (= co~/E'). Values of  Aco/~Oo are then 
obtained at different values of  t an6  and the 
results plotted. These results show that in the 
limit of  small tan 5 we have 

Aco 1 
-- tan25 (A13) 

6Oo 8 

which then leads to Equation 8. 
In addition to showing the general dependence, 

the calculations also show the deviation from 
Equation A13 with increasing tan 6. For instance 
at tan 6 = 0.06, the maximum value for our data, 
Equation A13 underestimates the exact value by 
roughly 2%. 

As a check of  the computer calculations, an 
expression analogous to Equation A9 for the 
damped driven harmonic oscillation was tested and 
yielded 

Aco 1 
- tan26 (A14) 

COo 4 

for small tan 6, good to 0.1% at tan 6 = 0.09, in 
accord with theory (see, for example [16]). 

A p p e n d i x  2 

Following Schwarzl and Struik [10] we write 

dE'(6o) _ 2 
E"(co), ( a15)  

d l n c o  7r 

where we have replaced the shear modulus by 
Young's modulus and co = 27rf. Upon integrating 
one obtains 

I n  6o 2 

EttG)2)__ E,((...Ol) = 277. fln6oE"(~ din co, 
(A16) 

and approximating the 
trapezoid we have 

E'@2) = E'(~,) +2 IE"(~2), 
/ f  [ 

integration areas as a 

Finally, letting E"(co) = E'(co) tan 6 
rearranging we have 

s  = s 

E"(C~ In co2 

(..d 1 

(A17) 

(co) and 

1 + (1/~) in (~o~/~)  tan ( ~ , )  ], 
x 1 -- (-1/Tr) In (co2/co,) tan (602) j 

(A18) 

which is equivalent to Equation 10. 

7 2 9  



While no approximations exist in going from 
Equation A17 to A18, there are approximations 
involved in Equations A15 and A17. We can 
obtain a measure of  the reliability of  Equation 
A17 in the following manner. 

Recall that E'(co) and E"(co) can be written in 
terms of  the relaxation spectrum H(r) as 

f 2  ("02"/ '2  
E'(co) = d i n  r H(r) 1 + cozr 2 + Eo 

and (A19a) 

E"(w) = d In r H(~-) 1 + co2r 2 " 
(A19b) 

Rewriting Equation A17 in terms of  Equation 
A19a and b we obtain 

where 

co~r 2 f~d r H(r) In 
1 + w~f2 

. ~  d in  ~" H(T) F(~2,  ~ a, r) (A20) 

co~r 2 In (co2/COl) 
F(~o2, (-ol, r)  - + 

1 + co~r 2 rr 

] + co~ "2 + 1 + ~ . 2 ] '  (A21) 

Consequently, Equation A17 can be tested by per- 
forming the integration in Equation A20 over 
some reasonable interval, given a function H(r). 

We proceed by assigning 

7/ !o  ]m  (A22) H(z) = Ho ] + (z/ro)2j , 

which represents a logarithmically symmetric 
function peaked at r = Vo whose half-width is 
given by A~-= 2(2 2 / m -  1) 1/2. We then let 6o2/ 
wx = 5/3, representing an estimate of  the fifth 
harmonic from the third, the longest and thus 
worst-case frequency estimate employed in the 
experiment. Finally, let COl = R/To where 10 -4 

R ~< 1 (the region of  maximum expected error 
for Equation A20) and integrate from 10-4~ ~ < 
r/'ro <- 10 +4~ In general the integrations must be 
performed numerically; however, for the special 
case m = 0 one can obtain an exact expression 
for the left integral as a check of  the accuracy 
of  the numerical method. For our conditions the 
agreement was found to be better than one part 
in 10 +6. For m = 0.425, representing a half- 

730 

4 7 5 0  . . . .  , . . . .  , . . . .  

4 7 0 0  

n 

4650 

0 0 
0 

4 ~ 6  . . . .  5'0 . . . .  18o . . . .  i~o 
o,2 

FigureA1 Normalized frequency as a function of mode 
number squared at 246.5 K for poly(butylene terephtha- 
late). The circles represent raw data, and the crosses data 
corrected for damping and frequency dispersion. 

width of  one decade, Equation A20 is in error 
less than 2% and for a more realistic half-width 
of  two decades ( m = 0 . 1 7 7 )  the accuracy is 
better than 0.5%. Of course these results are 
independent of  Ho and E0. 

To determine how well Equation A20 applie s 
to the experimental data, Ho and Eo are deter- 
mined by employing the known experimental 
values of  E '  and E" at maximum damping. Because 
d tan 6 ( f) /df  <, 0 at all temperatures (see Equations 
2 and 3), cOlro = 1 is never attained and at most 
w l r o = R < ~ 3 / l l .  If Equation A20 is now 
examined with the derived values of  Eo and Ho, a 
0.07% error is obtained for a modulus change 
of  1.72%, the maximum observed, due to fre- 
quency dispersion between the third and fifth 
harmonics. 

This error is a sharp function of  ro and a 
reduction in R by a factor of  3 reduces the error 
to below 0.02%, a figure comparable to the 
measurement error of  the normalized frequencies 
for large damping. Consequently, we may con- 
clude that for all except the absolue worst-case 
conditions, Equation A20 approximates our 
data over the frequency regions of  interest to 
within experimental error. 

This fact is made clear in Fig. A1 in which data 
are plotted for 246.5 K, our worst-case conditions 
(see Figs. 2 and 3). Here the circles and crosses 
represent, respectively, measured and corrected 
normalized frequencies plotted as a function of  
mode number squared. Employing no adjustable 
parameters the data are brought into a straight 



l ine using the  th i rd  o v e r t o n e  for  the  re fe rence  

f r e q u e n c y  as m e n t i o n e d  prev ious ly .  
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